Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease.
نویسندگان
چکیده
Sleep disturbances in neurological disorders have a devastating impact on patient and carer alike. However, their pathological origin is unknown. Here we show that patients with Huntington's disease (HD) have disrupted night-day activity patterns. This disruption was mirrored in a transgenic model of HD (R6/2 mice) in which daytime activity increased and nocturnal activity fell, eventually leading to the complete disintegration of circadian behavior. The behavioral disturbance was accompanied by marked disruption of expression of the circadian clock genes mPer2 and mBmal1 in the suprachiasmatic nuclei (SCN), the principal circadian pacemaker in the brain. The circadian peak of expression of mPer2 was prematurely truncated, and the mRNA levels of mBmal1 were attenuated and failed to exhibit a significant circadian oscillation. Circadian cycles of gene expression in the motor cortex and striatum, markers of behavioral activation in wild-type mice, were also suppressed in the R6/2 mice, providing a neural correlate of the disturbed activity cycles. Increased daytime activity was also associated with reduced SCN expression of prokineticin 2, a transcriptional target of mBmal1 encoding a neuropeptide that normally suppresses daytime activity in nocturnal mammals. Together, these molecular abnormalities could explain the pathophysiological changes in circadian behavior. We propose that circadian sleep disturbances are an important pathological feature of HD, that they arise from pathology within the SCN molecular oscillation, and that their treatment will bring appreciable benefits to HD patients.
منابع مشابه
Chronic sleep disturbance and neural injury: links to neurodegenerative disease.
Sleep-wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep-wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, th...
متن کاملIncreased numbers of motor activity peaks during light cycle are associated with reductions in adrenergic alpha(2)-receptor levels in a transgenic Huntington's disease rat model.
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HD gene. Besides psychiatric, motor and cognitive symptoms, HD patients suffer from sleep disturbances. In order to screen a rat model transgenic for HD (tgHD rats) for sleep-wake cycle dysregulation, we monitored their circadian activity peaks in the present study. TgHD rats of both sexes showed h...
متن کاملInter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1, PER2 and PER3 mRNA in human leukocytes.
STUDY OBJECTIVES Individual sleep timing differs and is governed partly by circadian oscillators, which may be assessed by hormonal markers, or by clock gene expression. Clock gene expression oscillates in peripheral tissues, including leukocytes. The study objective was to determine whether the endogenous phase of these rhythms, assessed in the absence of the sleep-wake and light-dark cycle, c...
متن کاملIntegration of human sleep-wake regulation and circadian rhythmicity.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pin...
متن کاملFunctional Genomics of Sleep and Circadian Rhythm Invited Review: Integration of human sleep-wake regulation and circadian rhythmicity
Dijk, Derk-Jan, and Steven W. Lockley. Invited Review: Integration of human sleep-wake regulation and circadian rhythmicity. J Appl Physiol 92: 852–862, 2002; 10.1152/japplphysiol.00924.2001.—The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2005